3.228 \(\int \frac{1}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}} \, dx\)

Optimal. Leaf size=93 \[ \frac{2 \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}-\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d} \]

[Out]

-((Sqrt[2]*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d))
+ (2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.127829, antiderivative size = 93, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {2779, 12, 2782, 205} \[ \frac{2 \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}-\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]),x]

[Out]

-((Sqrt[2]*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d))
+ (2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])

Rule 2779

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> -Sim
p[(d*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]]), x] - Dist[1/
(2*b*(n + 1)*(c^2 - d^2)), Int[((c + d*Sin[e + f*x])^(n + 1)*Simp[a*d - 2*b*c*(n + 1) + b*d*(2*n + 3)*Sin[e +
f*x], x])/Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b
^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}} \, dx &=\frac{2 \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}-\frac{\int \frac{a}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{a}\\ &=\frac{2 \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}-\int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx\\ &=\frac{2 \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}+\frac{(2 a) \operatorname{Subst}\left (\int \frac{1}{2 a^2+a x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=-\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{\sqrt{a} d}+\frac{2 \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 2.23491, size = 180, normalized size = 1.94 \[ \frac{2 \sin \left (\frac{1}{2} (c+d x)\right ) \cos \left (\frac{1}{2} (c+d x)\right ) \left (\frac{1}{2} \cos (c+d x) (\cos (c+d x)+2) \csc ^4\left (\frac{1}{2} (c+d x)\right ) \left (-\cos (c+d x)+\cos (c+d x) \sqrt{2-2 \sec (c+d x)} \tanh ^{-1}\left (\sqrt{\sin ^2\left (\frac{1}{2} (c+d x)\right ) (-\sec (c+d x))}\right )+1\right )-\frac{1}{10} \sin (c+d x) \tan (c+d x) \text{Hypergeometric2F1}\left (2,\frac{5}{2},\frac{7}{2},\sin ^2\left (\frac{1}{2} (c+d x)\right ) (-\sec (c+d x))\right )\right )}{d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a (\cos (c+d x)+1)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]),x]

[Out]

(2*Cos[(c + d*x)/2]*Sin[(c + d*x)/2]*((Cos[c + d*x]*(2 + Cos[c + d*x])*Csc[(c + d*x)/2]^4*(1 - Cos[c + d*x] +
ArcTanh[Sqrt[-(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]]*Cos[c + d*x]*Sqrt[2 - 2*Sec[c + d*x]]))/2 - (Hypergeometric2
F1[2, 5/2, 7/2, -(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]*Sin[c + d*x]*Tan[c + d*x])/10))/(d*Cos[c + d*x]^(3/2)*Sqrt
[a*(1 + Cos[c + d*x])])

________________________________________________________________________________________

Maple [B]  time = 0.382, size = 206, normalized size = 2.2 \begin{align*} -{\frac{\sqrt{2} \left ( \sin \left ( dx+c \right ) \right ) ^{2}}{da \left ( -1+\cos \left ( dx+c \right ) \right ) \left ( 1+\cos \left ( dx+c \right ) \right ) ^{2}} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{2} \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{{\frac{3}{2}}}\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) +2\,\cos \left ( dx+c \right ) \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2}\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) + \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{{\frac{3}{2}}}\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) +\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) \sqrt{2} \right ) \sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( \cos \left ( dx+c \right ) \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*a)^(1/2),x)

[Out]

-1/d*2^(1/2)/a*(cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arcsin((-1+cos(d*x+c))/sin(d*x+c))+2*cos(d*x+c)
*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arcsin((-1+cos(d*x+c))/sin(d*x+c))+(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arcsin
((-1+cos(d*x+c))/sin(d*x+c))+cos(d*x+c)*sin(d*x+c)*2^(1/2))*(a*(1+cos(d*x+c)))^(1/2)*sin(d*x+c)^2/(-1+cos(d*x+
c))/(1+cos(d*x+c))^2/cos(d*x+c)^(3/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.32743, size = 373, normalized size = 4.01 \begin{align*} -\frac{\frac{\sqrt{2}{\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )} \arctan \left (\frac{\sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \,{\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt{a}}\right )}{\sqrt{a}} - 2 \, \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-(sqrt(2)*(a*cos(d*x + c)^2 + a*cos(d*x + c))*arctan(1/2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*s
in(d*x + c)/((cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)))/sqrt(a) - 2*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))
*sin(d*x + c))/(a*d*cos(d*x + c)^2 + a*d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a \left (\cos{\left (c + d x \right )} + 1\right )} \cos ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(3/2)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(a*(cos(c + d*x) + 1))*cos(c + d*x)**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(a*cos(d*x + c) + a)*cos(d*x + c)^(3/2)), x)